
CS103 Handout 27

Summer 2019 August 5, 2019

Extra Practice Problems 2

Here’s another compilation of practice problems you can use to review just about everything from
this quarter.

Problem One: Cartesian Products and Subsets
Prove or disprove: if A, B, C, and D are sets where A × B ⊆ C × D, then A ⊆ C and B ⊆ D.

Problem Two: Repeated Squaring
In many applications in computer science, especially cryptography, it is important to compute ex-
ponents efficiently. For example, the RSA public-key encryption system, widely used in secure
communication, relies on computing huge powers of large numbers. Fortunately, there is a fast al-
gorithm called repeated squaring for computing xy in the special case where y is a natural number.

The repeated squaring algorithm is based on the following function RS:

RS (x , y)={
1 if y=0

RS (x , y /2)
2 if y is even and y>0

x⋅RS (x ,(y−1)/2)
2 if y is odd and y>0

For example, we could compute 210 using RS(2, 10) as follows:

In order to compute RS(2, 10), we need to compute RS(2, 5)2.
In order to compute RS(2, 5), we need to compute 2·RS(2, 2)2.

In order to compute RS(2, 2), we need to compute RS(2, 1)2.
In order to compute RS(2, 1), we need to compute 2·RS(2, 0)2.

By definition, RS(2, 0) = 1
so RS(2, 1) = 2·RS(2, 0)2 = 2·12 = 2.

so RS(2, 2) = RS(2, 1)2 = 22 = 4.
so RS(2, 5) = 2·RS(2, 2)2 = 2·42 = 32.

so RS(2, 10) = RS(2, 5)2 = 322 = 1024.

The RS function is interesting because it can be computed much faster than simply multiplying x
by itself y times. Since RS is defined recursively in terms of RS with the y term roughly cut in half,
RS can be evaluated using approximately log ₂ y multiplications. (You don't need to prove this).

Prove that for any x ∈ ℝ and any y ∈ ℕ, that RS(x, y) = xy. (Hint: use complete induction on y.)

2 / 11

Problem Three: Partial Sums
Suppose that you have a set S of n > 0 natural numbers. Prove that there must be a nonempty subset of
S where the sum of the numbers in that subset is a multiple of n. (Hint: Number the elements of S as x₁,
x₂, …, x . Then, look at xₙ ₁, x₁ + x₂, x₁ + x₂ + x₃, etc.)

Problem Four: Fun with DFAs and NFAs
Here's some true-or-false questions to ponder:

i. True or false: If D is a DFA over alphabet Σ and D has no accepting states, then (ℒ D) = Ø.

ii. True or false: If D is a DFA over alphabet Σ and D has no rejecting states, then (ℒ D) = Σ*.

iii. True or false: If N is an NFA over alphabet Σ and N has no accepting states, then (ℒ N) = Ø.

iv. True or false: If N is an NFA over alphabet Σ and N has no rejecting states, then (ℒ N) = Σ*.

Let Σ = {a, b, c, d, e} and let L be the following language:

L = { w Σ* | every character from Σ appears at least once in ∈ w }

Any DFA for L must have at least 32 states (you don't need to prove this.)

v. Prove that any DFA for L must have at least 32 states.

vi. Design a reasonably-sized NFA for L. This shows that even if you can't find a small NFA for a
language, you might be able to find a small NFA for its complement.

Problem Five: Antitautonyms
Let Σ = {a, b} and consider the language L = { wx | w Σ*, ∈ x Σ*, |∈ w| = |x|, and w ≠ x }. Prove that L
is not a regular language.

Problem Six: Closure Properties of CFGs
This question explores closure properties of CFLs.

i. Show that the context-free languages are closed under union, concatenation, and Kleene star.

ii. Although we didn't prove this, the context-free languages are not closed under complementa-
tion. In lecture, you saw a CFG for the language { w {∈ a, b}* | w is a palindrome }, and on
Problem Set Six you built a CFG for the complement of this language. Explain how this is pos-
sible even though the context-free languages aren't closed under complementation.

Problem Seven: Powers, Multiples, and Induction
Let k ≥ 1 be any natural number. Prove, by induction, that (k+1)n – 1 is a multiple of k for all n ∈ ℕ.

3 / 11

Problem Eight: Strongly Connected Graphs
A directed graph is called strongly connected if for any pair of nodes u and v in the graph, there's a
path from u to v and from v to u. In a directed graph, the indegree of a node is the number of edges en-
tering it, and its outdegree is the number of edges leaving it. Find a strongly-connected graph with 137
nodes where each node's indegree is equal to its outdegree.

Problem Nine: Closure Properties and Logic
Given the predicates

• TM(M), which states that M is a TM;
• String(w), which states that w is a string; and
• Accepts(M, w), which states that M accepts w,

Write a statement in first-order logic that says “the RE languages are closed under union.”

Problem Ten: Properties of Functions
This question explores properties of special classes of functions.

i. Prove or disprove: if f : → is a bijection, then ℝ ℝ f(r) ≥ r for all r ∈ ℝ.

ii. Prove or disprove: if f : → is a bijection, then ℕ ℕ f(n) = n for all n ∈ ℕ.

iii. Prove or disprove: if f : → and ℝ ℝ g : → are bijections, then the function ℝ ℝ h : → ℝ ℝ
defined as h(x) = f(x) + g(x) is also a bijection.

Problem Eleven: The Indistinguishability Relation
Let L be an arbitrary language over an alphabet Σ. We'll say that two strings x, y Σ* are ∈ indistin-
guishable relative to L, denoted x ≡L y, if the following is true:

∀w Σ*. (∈ xw ∈ L ↔ yw ∈ L).

Let L be a language over a set Σ. Prove that if x ≡L y, then for any string z Σ* we have ∈ xz ≡L yz.

Problem Twelve: Spin Me An Entree
Suppose that n people are seated at a round table at a restaurant. Each of the n people orders a different
entrée for dinner. The waiter brings all of the entrées out and places one dish in front of each person.
Oddly enough, the waiter doesn't put anyone's dish in front of them.

Prove that there is some way to rotate the table so that at least two people have their entree in front of
them.

4 / 11

Problem Thirteen: Regular Languages and Parity
Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or
 w has odd length and has the form On }

For example, EE ∈ PARITY, OOOOO ∈ PARITY, EEEE ∈ PARITY, and ε ∈ PARITY, but
EEE ∉ PARITY, EO ∉ PARITY, and OOOO ∉ PARITY.

i. Write a regular expression for PARITY.

ii. Design a DFA that accepts PARITY.

Problem Fourteen: Giant Balanced Strings
Let Σ = {a, b} and let L = { w Σ* | ∈ w has the same number of a's and b's and |w| ≥ 10100 }.

i. Prove or disprove: L is not a regular language.

ii. Prove or disprove: there is at least one infinite subset of L that is regular.

Problem Fifteen: CFGs and Swedish Pop Music
Let Σ = {a, b} and let L = { w Σ* | ∈ w is a palindrome and w contains abba as a substring }. Write a
context-free grammar for L.

Problem Sixteen: Power Sets and Cartesian Products
Prove or disprove: there are sets A and B where (℘ A × B) = (℘ A) × (℘ B).

Problem Seventeen: The Well-Ordering Principle
The well-ordering principle states that if S ⊆ ℕ and S ≠ Ø, then S contains an element n that is less₀
than all other elements of S. There is a close connection between the well-ordering principle and the
principle of mathematical induction.

Suppose that P is some property such that

• P(0)

• ∀k ∈ ℕ. (P(k) → P(k+1))

Using the well-ordering principle, but without using induction, prove that P(n) holds for all n ∈ ℕ.
This shows that if you believe the well-ordering principle is true, then you must also believe the princi-
ple of mathematical induction.

5 / 11

Problem Eighteen: Restricting and Manipulating Logic
Consider the following formula in first-order logic:

∀x ∈ ℝ. ∀y ∈ ℝ. (x < y → ∃p ∈ ℤ. ∃q ∈ ℤ. (q ≠ 0 ∧ x < p/q ∧ p/q < y))

This question explores this formula.

i. Translate this formula into plain English. As a hint, there's a very simple way of expressing the
concept described above.

ii. Rewrite this formula so that it doesn't use any universal quantifiers.

iii. Rewrite this formula so that it doesn't use any existential quantifiers.

iv. Rewrite this formula so that it doesn't use any implications.

v. Negate this formula and push the negations as deep as possible.

Problem Nineteen: Restrictions of Relations
Let R be a binary relation over a set A. For any set B ⊆ A, we can define the restriction of R to B, de-
noted R|B , to be a binary relation over the set B defined as follows:

x R|B y if xRy.

In other words, the relation R|B behaves the same as R, but only on the elements of B.

i. Prove or disprove: if R is an equivalence relation over a set A and B is an arbitrary subset of A,
then R|B is an equivalence relation over B.

ii. Prove or disprove: if R is a strict order over a set A and B is an arbitrary subset of A, then
R|B is a strict order over B.

iii. Prove or disprove: there is a strict order R over a set A and a set B ⊆ A such that R|B is an equiv-
alence relation.

iv. Prove or disprove: there is an equivalence relation R over a set A and a set B ⊆ A such that R|B is
a strict order.

6 / 11

Problem Twenty: Functions and Relations, Together!
(Midterm Exam, Spring 2015)

In this question, let A = {1, 2, 3, 4, 5}. Let f : A → A be an arbitrary function from A to A that we know
is not a surjection. We can then define a new binary relation ~f as follows: for any a, b ∈ A, we say a
~f b if f(a) = b. Notice that this relation depends on the particular non-surjective function f that we pick;
if we choose f differently, we'll get back different relations. This question explores what we can say
with certainty about ~f knowing only that its domain and codomain are A and that it is not a surjection.

Below are the six types of relations we explored over the course of this quarter. For each of the types,
determine which of the following is true:

• The relation ~f is always a relation of the given type, regardless of which non-surjective func-
tion f : A → A we pick.

• The relation ~f is never a relation of the given type, regardless of which non-surjective function
f : A → A we pick.

• The relation ~f is sometimes, but not always a relation of the given type, depending on which
particular non- surjective function f : A → A we pick.

Since these options are mutually exclusive, check only one box per row. (Hint: Draw a lot of pictures.)

~f is reflexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is irreflexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is symmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is asymmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is transitive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is an equivalence
relation

 ☐ Always ☐ Sometimes, but not always ☐ Never

~f is a strict order ☐ Always ☐ Sometimes, but not always ☐ Never

7 / 11

Problem Twenty One: Permutation Parity*

Let n be an odd natural number and consider the set S = {1, 2, 3, …, n}. A permutation of S is a bijec-
tion σ : S → S. In other words, σ maps each element of S to some unique element of S and does so in a
way such that no two elements of S map to the same element.

Let σ be an arbitrary permutation of S. Prove that there is some r ∈ S such that r – σ(r) is even.

Problem Twenty Two: Reversing Regular Languages
If w is a string, then wR represents the reversal of that string. For example, the reversal of “table” is “el-
bat.” If L is a language, then LR is the language { wR | w ∈ L } consisting of all the reversals of the
strings in L.

It turns out that the regular languages are closed under reversal.

i. Give a construction that turns an NFA for a language L into an NFA for the language LR. No
proof is necessary.

ii. Give a construction that turns a regular expression for a language L into a regular expression for
the language LR. No proof is necessary.

Problem Twenty Three: Centrist Languages
Prove that the language { w {∈ a, b}* | |w| ≡ 0 and the middle third of the characters in ₃ w contains
at least one a } is not regular.

Problem Twenty Four: Parenthesis Parity
Let Σ = {(,)} and let L = { w Σ* | ∈ w is a string of balanced parentheses and w has an even number of
open parentheses }. Write a CFG for L.

Problem Twenty Five: Nonregular Languages via a Different Path
The Myhill-Nerode theorem is a powerful tool for proving that languages aren’t regular, but it might
not be the easiest way to prove that a given language isn’t regular. This problem explores a different
route you can take to prove that various languages aren’t regular.

i. Prove that if L is a language, ₁ L is a regular language, and ₂ L ∩ ₁ L is not regular, then ₂ L is not₁
regular.

ii. Using your result from part (i), but without using the Myhill-Nerode theorem, prove that the
language L = { w {∈ a, b}* | w has the same number of a’s as b’s } is not regular.

* Adapted from http://www.cut-the-knot.org/do_you_know/pigeon.shtml.

http://www.cut-the-knot.org/do_you_know/pigeon.shtml

8 / 11

Problem Twenty Six: Just a Few More Grammars
Below is a list of alphabets and languages over those alphabets. Design a CFG for each language.

i. Let Σ = {1, ≥} and let L = { 1m≥1n | m, n ∈ ℕ and m ≥ n }. Write a CFG for L.

ii. On Problem Set 6, you explored the language L = ₁ { 1m+1n=1m+n | m, n ∈ ℕ } over the alphabet
{1, +, =} Consider the following generalization of this language, which we will call L , which₂
consists of all strings describing unary encodings of two sums that equal one another. For exam-
ple:

1 + 3 = 4 would be encoded as 1+111=1111

4 = 1 + 3 would be encoded as 1111=1+111

2 + 2 = 1 + 3 would be encoded as 11+11=1+111

2+0+2+0=0+4+0 would be encoded as 11++11+=+1111+

0=0 would be encoded as =

Notice that there can be any number of summands on each side of the =, but there should be ex-
actly one = in the string; thus 1=1=1 ∉ L . Write a CFG for ₂ L .₂

iii. Let Σ = {(,), [,]} and let L = {w Σ* | ∈ w is a string of balanced parentheses and brackets}.
This means that all parentheses and brackets must match one another, and collectively they
must obey the appropriate nesting rules. For example, ([])[] ∈ L, but ([)] ∉ L. Write a CFG
for L.

Problem Twenty Seven: Translating Out Of Logic
For each first-order statement below, write a short English sentence that describes what that sentence
says. While you technically can literally translate these statements back into English, you'll probably
have better luck translating them if you try to think about what they really mean. Then, determine
whether the statement is true or false based on what you know about sets and set theory.

• ∃S. (Set(S) ∧ ∀x. x ∉ S)

• ∀x. ∃S. (Set(S) ∧ x ∉ S)

• ∀S. (Set(S) → ∃x. x ∉ S)

• ∀S. (Set(S) ∧ ∃x. x ∉ S)

• ∃S. (Set(S) ∧ ∃x. x ∉ S)

• ∃S. (Set(S) → ∀x. x ∈ S)

• ∃S. (Set(S) ∧ ∀x. x ∉ S ∧ ∀T. (Set(T) ∧ S ≠ T → ∃x. x ∈ T))

• ∃S. (Set(S) ∧ ∀x. x ∉ S ∧ ∃T. (Set(T) ∧ ∀x. x ∉ T S∧ ≠ T))

• ∃S. (Set(S) ∧ ∀x. x ∉ S) ∧ ∃T. (Set(T) ∧ ∀x. x ∉ T))

9 / 11

Problem Twenty Eight: Rock, Paper, Scissors
(Final Exam, Winter 2012)

The number of characters in a regular expression is defined to be the total number of symbols used to
write out the regular expression. For example, (a b)*∪ is a six-character regular expression, and ab
is a two-character regular expression.

Let Σ = {a, b}. Find examples of all of the following:

• A regular language over Σ with a one-state NFA but no one-state DFA.

• A regular language over Σ with a one-state DFA but no one-character regular expression.

• A regular language over Σ with a one-character regular expression but no one-state NFA.

Prove that all of your examples have the required properties.

10 / 11

Problem Twenty Nine: The Lava Diagram

Below is a Venn diagram showing the overlap of different classes of languages we've studied so far.
We have also provided you a list of numbered languages. For each of those languages, draw where in
the Venn diagram that language belongs. As an example, we've indicated where Language 1 and
Language 2 should go. No proofs or justifications are necessary, and there is no penalty for an incorrect
guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { ⟨M, w | ⟩ M is a TM, w is a string, and M accepts wn for every natural number n }

4. { ⟨M, w | ⟩ M is a TM, w is a string, and M accepts wn for at least one natural number n }

5. { w {∈ a, b}* | w contains the same number of copies of the substrings aabb and bbaa }

6. { w {∈ a, b}* | w contains the same number of copies of the substrings ab and ba }

(Careful, this one is tricky: try writing out some sample strings in this language before you an-
swer. The substrings ab and ba are allowed to overlap.)

7. { ⟨M, w | ⟩ M is a TM, w is a string, M loops on w, and |⟨M, w | ≤ 10⟩ 137 }

8. { ⟨M | ⟩ M is a TM and M loops on ⟨M }⟩

11 / 11

Problem Thirty: Arden’s Lemma
When you were first learning algebra, you probably learned a family of techniques to solve equations in
which a variable x was on both sides of an equals sign. For example, you probably learned how to look
at a formula like

x2 = ax + b

and to use the quadratic formula to solve for x.

It's also possible to set up equations involving some unknown that appears on both sides of an equals
sign, but where the quantities involved are languages rather than numbers. For example, if A and B are
languages, you may want to determine what languages X satisfy the equality

X = AX ∪ B.

Just as the quadratic formula is a useful tool for solving for x given a quadratic equation, in formal lan-
guage theory there's a result called Arden's lemma that's useful for solving for X in an equation of the
above form. Specifically, Arden's lemma says that, given the equality X = AX ∪ B, you are guaranteed
that

A*B ⊆ X.

In this problem, we're going to ask you to prove Arden's lemma.

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L and ₁ L are₂
languages over an alphabet Σ, then the concatenation of L₁ and L₂, denoted L₁L , is the language₂

L₁L = { ₂ wx | w ∈ L and ₁ x ∈ L }. ₂
From concatenation, we can define language exponentiation of a language L inductively as follows:

L0 = {ε} Ln+1 = LLn

You may find these formal terms helpful in the course of solving this problem.

i. Let A and B be arbitrary languages over some alphabet Σ. Prove, by induction, that if X = AX ∪
B, then AnB ⊆ X for every n ∈ ℕ. Please use the formal definitions of concatenation, language
exponentiation, union, and subset in the course of writing up your answer.

If you'll recall, we formally defined the Kleene closure of a language L over Σ to be the language

L* = { w Σ* | there is some ∈ n ∈ ℕ such that w ∈ Ln }.

ii. Let A and B be arbitrary languages over some alphabet Σ. Using your result from part (i) of this
problem and the formal definition of L*, prove that if X = AX ∪ B, then A*B ⊆ X.

